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Substitution into the second term of (A-2) gives

(A-8)

. RE2 5 ds
lim {A4,°S + my + Z(8)} 57—
=00 ‘_1l:/2 S 1

with S = r exp (i6), and dS = ir exp (i) d0. In the limit (A-8)
reduces to

iﬂAlw . (A'9)

Collecting (A-1), (A-2), (A-6), (A-7), and (A-9) and simplifying
gives the result

© .
zQ) = zf —f(—f)—ldg + AR+ A

7T Jo
L A k
2 =1 . (A-10
kgl 1 + ka ( )
Substitution of tan () for Q in (A-10) gives
2 /2
Za) = _f RO) 0 + A + A_,°
T Jo
L A k
2 Lo (A-11
kgl 1 + ka ( )
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A Note on the Finite-Element Solution of Exterior-Field
Problems

Z. J. CSENDES, MEMBER, IEEE

Abstract—An approximate closed-form expression corresponding to
the energy functional in an infinite exterior region satisfying Laplace’s
equation is derived for use with the finite-element method. This expression
simplifies the treatment of exterior-field problems in numerical cal-
culations. The expression is given in terms of a few numerical matrices
and logarithmic functions.

v

I. INTRODUCTION

A number of problems in electromagnetics can be formulated
in terms of an interior region and an exterior region satisfying
Laplace’s equation with boundary conditions at infinity. Several
methods have been developed for the numerical treatment of
these problems, including boundary relaxation [1]-[4], [7] and
exterior finite-element methods [5], [6]. A common feature of
all of these methods is the solution of the problem in terms of
a finite, bounded region called a “‘picture frame” and the use
of Green’s functions to determine picture-frame boundary
conditions.
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There are two competing approaches to the selection of picture-
frame regions and the use of Green’s function boundary con-
ditions. In one approach, first proposed by Silvester and Hsiech
[5], a single picture frame is defined and the energy-functional
contribution of the entire region exterior to this picture frame is
evaluated and added to the interior-region energy functional.
The solution is therefore obtained by considering the field in all
space, but by explicitly solving for the field only in the region
interior to the picture frame. In the other approach, proposed
by McDonald and Wexler [6], two concentric picture frames
are defined and the integral equation relating the potentials
between the two picture frames is used to specify the boundary
conditions on the outer picture frame. Fields outside of the
outer picture frame are never considered in the solutionh process;
the integral equation merely provides a relationship between
internal field values.

As developed in the references, however, the energy functional
in the exterior region is evaluated by using an integral trans-
formation and weighted Gaussian quadrature formulas. The
programming requirements of this procedure are relatively
difficult and have limited the application of the technique. In
this short paper, the value of the exterior-field energy functional
is expressed in closed form. The programming requirements of
these closed-form expressions are much less than that of the
original transformation-quadrature procedure; hence, the avail-
ability and utility of exterior-field finite-clement solutions is
increased.

II. THE EXTERIOR-FIELD FUNCTIONAL

It is shown in [5] that the energy functional corresponding to
the exterior of a finite-element mesh embedded in a space where
Laplace’s equation applies is given by

Fg = aRQ ™ 'Ra” )

where a is a row vector of potential coefficients on the edge of
the finite-elemient mesh and R and Q are the symmetric matrices

R

1

SE BT()B(x) dx @)

Q

ff jﬁ BTG, EBE) de dx. ®

In these equations, f(x) is a row vector -composed of the inter-
polation polynomials corresponding to the coefficients @ and

G(x,8) = 2% In|x ~ ¢ )

&

where |x — £| indicates the distance between point x and point &,
The matrices R and @ in (2) and (3) may be converted into
finite-element form by noting that

. .
Bx) = hzl B®(x) )
where f™(x) is a row vector containing the interpolation poly-
nomials for element 2 (B®(x) = 0 if x is outside element /) and
N is the number of elements on the boundary. By making the
substitution z = x/L, where L, is the length of the exterior side
of element %, the interpolation polynomials g®(x) may be
written as :

BP(zLy) = p(@)T (6)
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TABLE 1

Values of the matrix I for n=1l,...,6.

Each matrix should be

divided by the common denominator CDn).

- . (1) _
n=1l ; CD 1
1 0
-1 1
=2 5 ¢ =1
1 0 o
-3 4 -1
2 -4 2
- . (3)_
n=3 ; CD =2
2 0 o0 o
-11 18 -9 2
18 -45 36 -9
-9 27 -27 9
n=4 ; cifl =3
! D
3 0 0 0 0
~25 48 -36 16 -3
70 -208 228 -112 22
-80 288 -384 224 -48
32 -128 192 -128 32
- . (5) _
n=5 ; ¢y’ = 24
24 0 0 0 0 0
-274 600 -600 400  -150 24
1125 -3850 5350 -3900 1525 ~250
-2125 8875 -14750 12250 -5125 875
1875 -8750 16250 -15000 6875  -1250
-625 3125 ~6250 6250 ~-3125 625
_ . (6) _
=6 ; Cp° =10
10 0 0 0 0 0 0
-147 360 -450 400 -225 72 ~10
812 -3132 5265 -5080 2970 -972 137
-2205 10440 =-20745 22320 ~13815 4680 -675
3150 -16740 36990 ~-43560 28890 -10260 1530
-2268 12960 =-30780 38880 -27540 10368 -1620
648 -3888 9720 -12960 9720 ~3888 648
where for an nth-order finite element p(z) is the vector and .
1
2
p@) = [1zz2 - 2"] %) 1) = f PO In (Lyjz — ¢y dL. 12)
0

and I' is an (n + 1) by (# + 1) matrix of constants. In finite-

element analysis, the polynomials g% (x) must equal the equi-

spaced Lagrange interpolation polynomials [8]. Forn = 1,---,6,

these are obtained by setting the matrix I" equal to the numerical

values given in Table 1. ‘
Substituting (5) and (6) into (2) and (3) yields

N
R=Y LITAT (8)
n=1
N N
0= Lolw prpp ©)
g=1H=1 27
where
1
A= f P () dz (10)
0
1 L
B = f pr(I (—h z) dz an
0 Lg

The integration of the matrix 4 is easy. The i th element of the
vector p(z) is zi~1; therefore, 4 is the Hilbert segment matrix
[8, p. 196]

1

Ay= ———
i+j—1

ij

13)

III. EVALUATION OF THE MUTUAL TERMS

The evaluation of the integrals for terms involving two different
finite elements is made difficuit by the fact that the algebraic form
of the distance between points z and { on different sides of a two-
dimensional mesh is very complicated. In order to simplify the
expressions involved, the following geometrical approximation
is introduced: It is assumed that the distance |z — (| varies as a
linear function of {

lz =8l =(@2—r) +r, (14)

where r; and r, represent the distances from the point z to the
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©

Fig. 1.

(a) A typical finite-element subdivision of an unbounded region

indicating the locations of the exterior sides used in the integration.
(b) The representation of two exterior sides in a finite-clement mesh and
\ basis of the geometrical approximation used in the evaluation of I(z).
(c) A geometrical interpretation of the errro in the distance r = |z — {

obtained from (14).

two endpoints of the second line segment (see Fig. 1). (Note that
r, and r, are functions of z.)

The error introduced by the approximation in (14) may be
determined from Fig. 1(¢). In this figure, A is the arc of a circle
of radius r; centered at the point (z,0) and C is a chord drawn
between the endpoints of the arc. The quantity |z — ] in (14)
defines another curve § which is obtained by adding a propor-
tionate amount of the length r, — r; to the radius vector r; as {
varies from zero to one. It follows that the distance obtained
from (14) is larger than the true distance by an amount equal
to the difference between the arc A4 and the associated chord C.
Provided that the angle « subtended by the second element E,
is small, very little error is introduced. The arc angle « will be
small provided that either 1) the distance r, is much larger than
the length of the element E,, or 2) the angle § between the sides
of elements E, and E, is small. These two conditions imply that
the exterior boundary should be convex and should consist of
short sides E, compared with the overall diameter of the region.

Of course, the error introduced in the evaluation of the exterior
functional & ¢ by the approximation (14) is much smaller than

the error introduced in the distance |z — (] itself since potential
at point z is a logarithmic function of this distance.
Using (14) and making the substitution

n="_+r/L 1s)
where L; = r, — ry, the integral I(z) becomes
ra/Lg 1
I(z) = f p (n - —) In (L,L.n) dn. (16)
ri/La Ld

Using the binomial theorem, the vector p(y — r,/L,;) becomes
p(n — rfLy) = P(ﬂ)M+(“r1/La)

where M*(x) is an upper triangular matrix possessing the
elements

an

i —

. P— 1\ ..
(£1)71 ({ )x’_', ifi<j
M;*(x) = Iy

0, ifi >j. (18)



SHORT PAPERS

Therefore, (16) becomes
K(z) = J*(ri/Lgyra/Ly, LiLYIM*(—ry/Ly) (19

where

JE(ab,c) = f " (1) In (cn) dn. 20)

a

Since the kth component of p() is #*~?, the kth component of
J* reduces to

k—1
Jki(a,b’c) = (iL
x
bk ak
. bkl _ k v i O
{ n(eb) — ¢*In(ca) = 2 + k} 1)

Furthermore, from (18), since M, ;*
ponent of I(z) is given by

J )J k j—1 J 2 k
"R ) @) () e

_ _ L\ 1
In (L,r;) k(rl) +k}. (22)

= 0 if k > j, the jth com-

According to (22), the function I [(L,/Lp)z] in (11) may be
evaluated at any point z. If it is evaluated at the nodes z; of the
interpolation polynomials g(zL,), the following interpolatory
approximation results

I (ﬁ z) = B2}V (23)
Lg
where ¥V is a matrix with the elements
Vij = Ij(z). 249
From (23) and (6), the matrix B becomes
B = ATV 25

where the elements of the matrices 4 and I' were previously
defined.

IV. EVALUATION OF THE SELF TERM

The previous equations are modified when evaluating integrals
involving only one side of a single finite element. In this case,
substituting # = z — { in (12) yields

J*z——l
z

where L is the length of the element edge. Using (18), (26) becomes

I(z) = p(z — ) In (Linl) dn (26)

Iz) = [J-0,1 — z, L) + J*C,5LIM (). 7)

Since limit,_, z¥In z = 0 for k > 1, the jth component of I(z)
is given by

M~ EM“'

I(2) [/,-,1 — z, L) + J.*(0,z,L)IM,” (2)

_ Jj—1 J=ke1 Nk _ _1
_k=1k(k_‘1) {z (- 2 [lnL(l 2) k]

+ (—1)F 1z [ln Lz — %]} . (28)

Inserting I(z) from (28) into (11) yields for the components

47

of B the integrals

._jl j-1 ZiHi—k=101 _ )k
B”_l;::ﬁz(k—l) {f J-k=1(1 - 2)

. [In L1 - z) — ];] dz

+ (—1)F! J‘l Piakt [ln Lz — -1-] dz} . (29
0 k

When these integrals are evaluated, matrix B may be written
in the form

B=0©Ih{) - (30)

where @ and ® are constant numerical matrices. There are three
different expressions for the elements of @ and ®@: fori # 1, the
substitution w = 1 — z in the first integral, together with the
binomial theorem, yields

G -DI[S (—DF? LG+ —k— 1)
O = i+ [k=1k!(j — k) * k; kU (j — k)
i+j-k~1 (_1)1 ] (31)
& N+ I+ DG+ —k—1— 1)
U= DUE D G =D S (DA
YOG H NP ERNG = k) i+ 7 Ekkl (G - k)
j . . - _ '
+(j_1)!2(l+j k— 1!

=1 kU — k)!

(-D'Qk + 1+ 1)
Kk + I+ 120G +7—k -1 -1

—k—1
p)
=1

(32)
Fori = 1,j # 1, one obtains
1 ot
e v (=1 il
ST AP
) jik (_l)l
=ik 1+ DING - k- D!
. _1yk-1
J+ 1 =1 k(G — k)
2j + 1
®; = 5——7+ UG- D! —
u= ooy TV kZl kk'
2 (-D'Qk + 1+ 1
ENG -k - DI+ I+ D2
+ (G =D& (=p?
G+ D1 k(G — )
. h) _1yk—1
G-D! g (=D 34
J+ 1 &= kk! (G — )
andfori=j=1
0 =1 (35
(Dll = %. (36)

The numerical values of ® and ® are given in Tables II and
I1I for polynomial elements of up to order 6; note that since
®,; and ®;; are independent of the order of the interpolation
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TABLE II

Values of the sixth order 0 matrix;
are embedded in these values.

lower order © matrices

1 0 -1 -1 -5 -8 ~17
p) 3 —z
2 -1 -29 -29 -57 -883 -2123
g 36 300 T80 735 7688 4536
7 -1 -19 -421 -199  -1003 -3557
48 50 716 7940 360 3402 8400
11 -1 -23 ~163 -301  =-2239 -2615
105 18 757 1280 1620 8400 6776
4 «29 =67 -37 -21  =6173 -3571
25 1370 560 324 125 25410 10080
11 =7 -61 -31 -278  =1349 -9293
137 382 572 300 1815 60438 28392
29 -19 -239 -1597 -709 -209 -1669
478 1734 4200 16940 5040 1014 5488
TABLE III

Values of the sixth order ¢ matrix; lower order ¢ matrices

are embedded in these values.

3 10 -19 =551 -67 -19449 ~18797
Z ) “I8 600 18 9800 6720
0 =65 -37 -7937 -2723 -291953 -403943
124 8 7200 1800 141120 141120
-19 -7 -41 -4181 ~2243 -825  -2040539
73 12 8 3600 1440 392 705600
-19 -21 =65 =11491 ~5707 -750389 -19559
~ig 32 2 9600 3600 352800 6720
-853 =158 -2243 -293 -14437 -188957 -2062843
1800 —22% 2400 240 9000 88200 705600
-21 -2113 -689 -2971 -364 -28493 -190738229
~20 2880 720 2400 225 13230 65029580
-4397 -556 =171721 -73543  =71801 -5449 -1166876783
7840 735 176400 58800 44100 “75Z0 427196860

polynomials, lower order values of @ and @ are embedded in the
sixth-order matrices.

Finally, combining (25) and (30), one obtains the complete
expression for the external energy functional including both
mutual and self terms

B=ATV + ®In(L) — @ 37

where all matrices are assumed to be numbered tonsistently.

V. CONCLUSIONS

The exterior-field finite-element functional may be expressed
in a convenient closed form requiring the evaluation of a few
logarithms and a few operations with small matrices. This

closed-form expression is intuitively appealing and simplifies the
treatment of boundaries at infinity for regions satisfying Laplace’s
equations.

In practice, the evaluation of the matrix ¥ in (24) may be
simplified for nonadjacent finite-element edges. Provided that
the distances r and r, are large compared to the edge length L,
the integrals I(z) are nearly constant for the range of values
encountered and need only be computed once (preferably at
the midpoint of element 4).

The extension of the analysis in this short paper to the solution
of exterior-field problems involving wave propagation is not
straightforward. The energy associated with the Helmholtz
equation in an infinite region is not finite and, as a result, the
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interior Green’s function approach of [6] must be used. In this
case, however, there is no exterior S matrix contribution, only
an additional set of conditions on the picture-frame nodes.
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Hall Field and Magnetoresistance Effects in Rectangulér
Waveguide Completely Filled with Semiconductor

J. B. NESS anp M. W. GUNN

Abstract—Microwave propagation through a rectangular waveguide
completely filled with semiconductor and subject to a transverse magnetic
field is analyzed. When the magnetic field is parallel to the broad wall
of the waveguide (the x axis), propagation is analyzed in terms of the
Hall effect. For the magnetic field parallel to the y axis, the effect of the
field on the propagation is shown to be due to longitudinal magneto-
resistance effects. Good agreement is obtained between theory and
experiment in both cases. The experiments were performed at 30 GHz
using n-type germanium.

INTRODUCTION

In this short paper the effects of the application of transverse
magnetic fields on the propagation coefficient of a rectangular
waveguide completely filled with semiconductor (Fig. 1) are
considered theoretically and experimentally. In the absence of
the magnetic field the dominant propagation mode in the semi-
conductor-filled waveguide will be the TE,, mode. However, the
semiconductor permittivity becomes a tensor in the presence of
a magnetic field and the tensor permittivity causes coupling of
higher order modes to the TE;, mode. It has been shown pre-
viously [1] that propagation in the presence of a magnetic field
in the x direction is by TEy, modes or by anomalous modes
having all six field components.

The method of analysis used here is an approximation tech-
nique based on Schelkunoff’s “generalized Telegraphists Equa-
tion”* and adopted previously to analyze the partially filled guide
[2]. The propagation characteristics are analyzed in terms of
coupling between modes which implies that the propagation
mode in the presence of a magnetic field along the x axis is by an
anomalous mode rather than TE,, modes.
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Fig. 1. Fully filled guide.

Since the tensor permittivity is derived assuming that the
semiconductor has spherical constant energy surfaces, this method
predicts that propagation will be unaffected by a magnetic field
directed along the y axis, as the magnetic field is now parallel
to the electric field of the TE,, mode. However, experimentally
the germanium samples do show a magnetic-field dependence
for the field along the y axis and the affect is explained quali-
tatively and quantitatively by the longitudinal magnetoresistance
effect.

Experiments performed at 30 GHz using a microwave trans-
mission bridge are used to verify the theoretical analyses for both
directions of magnetic field. At this frequency the results indicate
that the effects of carrier inertia are measurable, and by taking the
relaxation time into consideration better agreement between
theory and experiment is obtained.

THEORY

Consider an electromagnetic wave propagating through a
semiconductor. The total current density can be written as

J=J,+ J, )
where

J; the displacement current density;
J. the conduction current density.

In the presence of a magnetic field the semiconductor permit-
tivity becomes a tensor so that the current density can now be
written as

J = [8]—5; 2

The particular form of the permittivity tensor will depend on
the assumptions used in the derivation. Engineer and Nag [1]
have developed a form for this tensor by including the Hall field
in Maxwell’s equations, although all terms were assumed fre-
quency independent. Kataoka and Fujisada [3] have obtained
expressions for the tensor permittivity terms using the basic
equations of motion although the lattice permittivity term was
neglected in this derivation. The following derivation based on
the equation of motion for electrons under the influence of an
applied alternating electric field and a steady magnetic field [4],
includes both of these factors. Thus

m.* e m* =< = —q(Ee’" + 5, x B) (3)

dt Te
where

B the magnetic-flux density;

7,  the relaxation time for electrons assumed isotropic and
constant; '

v, the average induced velocity of the electrons;

m* the effective mass of the electrons.

For electromagnetic propagation along the z direction and
with the magnetic field in the x direction, (3) can be written in



