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Substitution into the second term of (A-2) gives

P
?7/2

lim {,41”~ + m. + Z(S)}= (A-8)
r-co – nlz

with S = r exp (i6), and dS = ir exp (@ do. In the limit (A-8)

reduces to

irrA1~. (A-9)

Collecting (A-l), (A-2), (A-6), (A-7), and (A-9) and simplifying
gives the result

+2f ‘-lk . (A-10~
&cl 1 + ~k2

Substitution of tan (0) for $2 in (A-1O) gives

n12

z(1) = 2
J

R(O) de + Al@ + A.lo
no

+ 2 ~ ‘-lk (A-n)
k=l 1 + ~k2”
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Note on the Finite-Element Solution of Exterior-Field

Problems

Z. J. CSENDES, MEMBER, IEEE

Afrsfract-An approximate closed-form expression corresponding to
the energy functional in an infinite exterior region satisfying Laplace’s

equation is derived for use with the finite-element method. This expression
simplifies the treatment of exterior-field problems iu numerical cal-
culations. The expression is given in terms of a few numerical matrices
and logarithmic functions.

I. INTRODUCTION

A number of problems in electromagnetic can be formulated

in terms of an interior region and an exterior region satisfying

Laplace’s equation with boundary conditions at infinity. Several

methods have been developed for the numerical treatment of

these problems, including boundary relaxation [1 ]-[4], [7] and

exterior finite-element methods [5], [6]. A common feature of

all of these methods is the solution of the problem in terms of

a finite, bounded region called a “picture frame” and the use

of Green’s functions to determine picture-frame boundary

conditions.
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There are two competing approaches to the selection of picture-
frame regions and the use of Green’s function boundary coti-
ditions. In one approach, first proposed by Silvester and Hsieh
[5], a single picture frame is defined and the energy-functional
contribution of the entire region exterior to this picture frame is
evaluated and added to the interior-region energy functional.
The solution is therefore obtained by considering the field in all
space, but by explicitly solving for the field only in the region
interior to the picture frame. In the other approach, proposed
by McDonald and Wexler [6], two concentric picture frames
are defined and the integral equation relating the potentials
between the two picture frames is used to specify the boundary
conditions on the outer picture frame. Fields outside of the
outer picture frame are never considered in the solution process;
the integral equation merely provides a relationship between
internal field values.

As developed in the references, however, the energy functional
in the exterior region is evaluated by using an integral trans-

formation and weighted Gaussian quadrature formulas. The
programming requirements of this procedure are relatively
difficult and have limited the application of the technique. In
this short paper, the value of the exterior-field energy functional
is exptessed in closed form. The programming requirements of
these closed-form expressions are much less than that of the
original transformation-quadrature procedure; hence, the avail-
ability and utility of exterior-field finite-element solutions is
increased.

II. THE EXTERIOR-FIELDFUNCTIONAL

It is shown in [5] that the energy functional corresponding to
the exterior of a finite-element mesh embedded in a space where
Laplace’s equation applies is given by

FE = aRQ - lRaT (1)

where a is a row vector of potential coefficients on the edge of

the finite-element mesh and R and Q are the symmetric matrices

R=
+

)J~(x)/?(x) dx (2)

Q=

$$
8T(x)G(x,WKH & ~x. (3)

In these equations, p(x) is a row vector composed of the inter-
polation polynomials corresponding to the coefficients a and

(4)

where lx – ~1 indicates the distance between point x and point{,

The matrices R and Q in (2) and (3) may be converted into

finite-element form by noting that

/?(x) = -f p(x)
‘=1

(5)

where /J(h)(X) is a row vector containing the interpolation POIY-.

nomials for element h (/J(k)(x) = O if x is outside element h) and

N is the number of elements on the boundary. By making the

substitution z = xjLh where Lh is the length of the exterior side

of element h, the interpolation polynomials /J(h)(x) may be

written as

@h)(ZLh) = p(z)r (6)
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TABLE I

Values of the matrix r for n=l, . . . ,6. Each matrix should be

divided” by the common denominator C#J .

n=l ; ~f)= ~

o
-: 1

100
-3 -1

2 -: 2

n=3 ; C(3)= .2
D

20
-11 18 -: :

18 -45 36 -9
-’9 27 -27 9

3 0 0 0 0

-25 48 -36 16 -3

70 –208 228 -112 22
-80 288 -384 224 -48

32 -128 192 -128 32

~=5 ; (5) = 24
CD

o 0 0 0 0
-2;: 600 -600 400 -150
1125 -3850 5350 -3900 1525 -2:;

-2125 8875 -14750 12250 -5125 875
1875 -8750 16250 -15000 6875 -1250
-625 3125 -6250 6250 -3125 625

~=Lj ; C(6)

D
= 10

10 0 0 0 0 0 0
-147 360 -450 400 -225 72 -lo

812 -3132 5265 -5080 2970 -972 137
-2205 10440 -20745 2232o -13815 4680 -675

3150 -16740 36990 -43560 28890 -10260 1530

-2268 12960 -30780 -~W: -27540 10368 -1620

648 -3888 972o 972o -3888 648

where for an rzth-order finite element p(z) is the vector

p(z)= [1222...2”] (7)

and r is an (n + 1) by (n + 1) matrix of constants. In finite-

element analysis, the polynomials /3(h)(x) must equal the equi-

spaced Lagrange interpolation polynomials [8]. For n = 1,...,6,

these are obtained by setting the matrix r equal to the numerical

values given in Table I.

Substituting (5) and (6) into (2) and (3) yields

where

J
1

A= p’(z)p(z) dz

B=ip”wu) ‘z

(8)

(9)

(lo)

(11)

and

J

1

z(z) = P(O in (JLIz – C!) M. (12)
o

The integration of the matrix A is easy. The ith element of the
vector p(z) is Zi -1; therefore, A is the Hilbert segment matrix

[8, p. 196]

Aij =
1

i+ j-1’
(13)

III. EVALUATIONOFTHE MUTUAL TERMS

The evaluation of the integrals for terms involving two different
finite elements is made difficult by the fact that the algebraic form
of the distance between points z and ~ on different sides of a two-
dimensional mesh-is very complicated. In order to simplify the
expressions involved, the following geometrical approximation
is introduced: It is assumed that the distance IZ – (I varies as a
linear function of ~

Iz – cl = (r, – rl)~ + r, (14)

where rl and rz represent the distances from the point z to the
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(a)

‘z=0 Z=l
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‘2

(b)

Z=o Z=t
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/
A-

(c)

Fig. ~. (a) A typical finite-element subdivision of an unbounded region
mdlcatmg the locations of the exterior sides used in the integration.
(b) The representation of two exterior sides in a finite-element mesh and

\ basis of the geometrical approximation used in the evaluation of Z(z).
(c) A geometrical interpretation of the errro in the distance r = Iz – <1
obtained from (14).

two endpoints of the second line segment (see Fig. 1). (Note that
rl and rz are functions of z.)

The error introduced by the approximation in (14) may be
determined from Fig. l(c). In this figure, A is the arc of a circle
of radius rl centered at the point (z,O) and C is a chord drawn

between the endpoints of the arc. The quantity Iz – ~1 in (14)

defines another curve S which is obtained by adding a propor-

tionate amount of the length rz – rl to the radius vector rl as ~

varies from zero to one. It follows that the distance obtained

from (14) is larger than the true distance by an amount equal

to the difference between the arc A and the associated chord C.

Provided that the angle a subtended by the second element E~

is small, very little error is introduced. The arc angle a will be

small provided that either 1) the distance rl is much larger than

the length of the element Eg, or 2) the angle ~ between the sides

of elements Efi and E~ is small. These two conditions imply that

the exterior boundary should be convex and should consist of

short sides Eg compared with the overall diameter of the region.

Of course, the error introduced in the evaluation of the exterior

functional @E by the approximation (14) is much smaller than

the error introduced in the distance /z - (1 itself since potential

at point z is a logarithmic function of this distance.

Using (14) and making the substitution

where Ld = rz – rl, the integral Z(z) becomes

‘(Z)=KM-W(L’L’- ‘1’)
Using the binomial theorem, the vector P(V – rl/L~) becomes

P(V– rl/J%) = P(?l)kf+(– rl/LJ (17)

where l.f * (x) is an upper triangular matrix possessing the
elements

M,*(X)= P)’-’(:=:)X’-”‘fi<~
(0, ifi > j. (18)
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of B the integrals

Z(z) = J+ (rl/L#JLd,LgLJVf+( – rl/Ld) (19)

where

J
b

.P(a>b,c) = p( * q) in (q) dq. (20)
a

Since the kth component of p(~) is ilk-1, the kth component of

J* reduees to

Jk*(a,b,c) = ‘=
k

“( }bkln(cb) –akln(ca)–~+~ . (21)

Furthermore, from (18), since Mkj+ = O if k > j, the jth com-

ponent of I(z) is given by

(k-J(2Jwr’n(L’r2)zj(z)=f!+2 ~–1
k= 1

- ln(Lgrl)-w++}”’22)
A~rding to (22), the function Z [(Lb/Lg)Z] in (11) may be

evaluated at any point z. If it is evaluated at the nodes Zi of the

interpolation polynomials 13(zLJ, the following interpolator

approximation results

()z :2 = /?(z)v (23)
9

where V is a matrix with the elements

Vij = Zj(zi). (24)

From (23) and (6), the matrix B becomes

B = mv (25)

where the elements of the matrices A and I_ were previously

defined.

IV. EVALUATION OF THE SELF TERM

The previous equations are modified when evaluating integrals

involving only one side of a single finite element. In this case,

substituting ~ = z – ~ in (12) yields

J
z—1

z(z) = – P(Z – V) in (L\vl) d~ (26)
z

where L is the length of the element edge. Using (1 8), (26) becomes

Z(z) = [J-(O,l – z, L) + J+(G,z,L)]~–(z). (27)

Since limitz~o Zk in z = O fork > 1, the jth component of Z(z)

is given by

Zj(z) = k$i[~k-((), 1 – z, L) + cfk+(o,z,L)]~k-(z)

‘k$; (;:j(z [j–k(l _ Z)k In L(l – z) – ~1
+‘-l)k-’z’[lnLz-+1)” (28)

Inserting Zj(Z) from (28) into (11) yields for the components

‘[’=W=:)Kzi+’-k-’(’-“k

[ 1
. lnL(l–z)-~ dz

+ ‘-l)k-’J:zi+’-’ FLz-~l’21”’29)
When these integrals are evaluated, matrix B may be written

in the form

B=@ln(L)–@ (30)

where @ and @ are constant numerical matrices. There are three

different expressions for the elements of 0 and Q: for i # 1, the

substitution w = 1 – z in the first integral, together with the

binomial theorem, yields

i+j–k–l

z

(-l)’ 1— (31)
1=1 l!(k+l+ l)(i+j–k–l– l)!

@,, =(~– 1)! j (–1)’-1 + (j– 1)! ~
z E

(–1)k-1
lJ

(i + j)’ k=l k! (j – k)! i + j k=lh%!(j – k)!

+(j–l)!~(i+j–k– l)!
kzl k! (j – k)!

i+j–k–l

“ ,~1
(- 1)’(2k + 1 + 1)

k(k+l+l)21 !(i+j–k–l– l)! “

(32)

For i = 1, j # 1, one obtains

“’i (– l)Z(2k + 1 + 1)

~=ll!(j –k–l)!(k+l +-1)2

+ (j – 1)! ~ (_ly-Iz
(j + l)zk=i /t! (j – /%)!

(33)

(34)

and fori=j=l

c)l~ = 1 (35)

The numerical values of@ and @ are given in Tables II and

III for polynomial elements of up to order 6; note that since

t%j and Q?lj are independent of the order of the interpolation
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TABLE 11

Values of the sixth order ~ matrix; lower order G matrices
are embedded in these values.

1 0 -1 -1 ~,

7 3

-1 -29 –29 -57
$ m m m %

7 -1 -19 -421 -199
4% m m m m

11 -23 -163 -301
lm s m m 1620

4 -29 -67 -37 -21
2T lm m m m

11 -7 -61 -31 -278
lm 3= m m 1815

-8 -1-1
T 7

-883 -2123
2688 4536

-1003 -3557
3402 8400

-2239 -2615
8400 6776

-6173 -3571
25410 m

* -9293
6048 28392

29 -19 ___ _—-239 -1597 -709 -209 -1669
4= lm 4200 16940 5040 1014 5488

TABLE 111

Values of the sixth order @matrix; lower order @matrices
are emtiedded in these values.

3 10 -19 -551
T T m m

o -65 -37 -7937
m m 7200

-19 -7 -41 -4181
7 n m 3600

.,

-19 -21 -65 -11491
m 7 7 9600

-853 -158 -2243 -293
m T2-5 2400 m

-2113-21 _ -689 *
z 2880 TZi 2400

-556*_ -171721 -73543,
7840 735 176400 58800

polynomials, lower order value8 of O and @ are embedded in the

sixth-order matrices.

Finally, combining (25) and (30), one obtains the complete

expression for the external enecgy functional including both

mutual and self terms

B= ArV+Oln (L)-@ (37)

where all matrices are assumed to be numbered consistently.

V. CONCLUSIONS

The exterior-field finite-element functional may be expressed

in a convenient closed form requiring the evaluation of a few

logarithms and a few operations with small matrices. This

-67 -19449
T 9800

-2723 -291953——
1800 141120

-2243 -825
1440 392

-5707 -750389——
3600 352800

-14437 -188957— —
9000 88200

-18797
6720

-403943
141120

-2040539
705600

-19559
6720

-2062843
705600

-364 -28493 -190738229
225 13230 ~

-71801 -5449 -1166876783
44100 427196860

closed-form expression is intuitively appealing and simplifies the

treatme~t of boundaries at infinity for regions satisfying Laplace’s

equations.

In practice, the evaluation of the matrix V in (24) may be

simplified for nonadjacent finite-element edges. Provided that

the distances r and rz are large compared to the edge length Lh,

the integrals Z(z) are nearly constant for the range of values

encountered and need only be computed once (preferably at

the midpoint of element h).

The extension of the analysis in this short paper to the solution

of exterior-field problems involving wave propagation is not

straightforward. The energy associated with the Helmholtz

equation in an infinite region is not finite and, as a result, the
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interior Green’s function ?pproach of [6] must be used. In this

case, however, there is no exterior S matrix contribution, only

an additional set of conditions on the picture-frame nodes.
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Hall Field I and Magnetoresistance Effects in Rectangular

Waveguide Completely Filled with Semiconductor

J. B. NESS AND M. W. GUNN

Abstract—Microwave propagation through a rectangular wavegnide
completely filled with semiconductor and subiect to a transverse magnetic
field is analyzed. When the magnetic field is parallel-to the broad wall
of the waveguide (the x axis), propagation is analyzed in terms of the

Hall effect. For the magnetic field parallel to they axis, the effect of the

field on the propagation is shown to be due to longitudinal magneto-

resistance effects. Good agreement is obtaiued between theory and

experiment in both cases. The experiments were performed at 30 GHz
using n-type germanium.

INTRODUCTION

In this short paper the effects of the application of transverse

magnetic fields on the propagation coefficient of a rectangular

waveguide completely filled with semiconductor (Fig, 1) are

considered theoretically and experimentally. In the absence of

the magnetic field the dominant propagation mode in the semi-

conductor-filled waveguide will be the TEI o mode, However, the

semiconductor permittivity becomes a tensor in the presence of

a magnetic field and the tensor permittivity causes coupling of

higher order modes to the TEIO mode. It has been shown pre-

viously [1] that propagation in the presence of a magnetic field

in the x direction is by TEO. modes or by anomalous modes

having all six field components.

The method of analysis used here is an approximation tech-

nique based on Schelkunoff’s “generalized Telegraphists Equa-

tion” and adopted previously to analyze the partially filled guide

[2]. The propagation characteristics are analyzed in terms of

coupling between modes which implies that the propagation

mode in the presence of a magnetic field along the x axis is by an

anomalous mode rather than TEon modes.

Manuscript received September 29, 1975; revised January 9, 1976. This
work was supported by the Austrahan Research, Grants. Committee.
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FIG I FULLY FILLED GUIDE

Fig. 1. Fully filled guide.

Since the tensor permittivity is derived assuming that the

semiconductor has spherical constant energy surfaces, this method

predicts that propagation will be unaffected by a magnetic field

directed along the y axis, as the magnetic field is now parallel

to the electric field of the TEIO mode. However, experimentally

the germanium samples do show a magnetic-field dependence

for the field along the y axis and the affect is explained quali-

tatively and quantitatively by the longitudinal magnetoresistance

effect.

Experiments performed at 30 GHz using a microwave trans-

mission bridge are used to verify the theoretical analyses for both

directions of magnetic field. At this frequency the results indicate

that the effects of carrier inertia are measurable, and by taking the

relaxation time into consideration better agreement between

theory and experiment is obtained.

THEORY .

Consider an electromagnetic wave propagating through a

semiconductor. The total current density can be written as

where

.IJ the displacement current density;

J= the conduction current density.

In the presence of a magnetic field the semiconductor permit-

tivity becomes a tensor so that the current density can now be

written as

J= [e]:. (2)

The particular form of the permittivity tensor will depend on

the assumptions used ‘in the derivation. Engineer and Nag [1]

have developed a form for this tensor by including the Hall field

in Maxwell’s equations, although all terms were assumed fre-

quency independent. Kataoka and Fujisada [3] have obtained

expressions for the tensor permittivity terms using the basic

equations of motion although the lattice permittivity term was

neglected in this derivation. The following derivation based on

the equation of motion for electrons under the influence of an

applied alternating electric field and a steady magnetic field [4],

includes both of these factors. Thus

#&e+m*ij_
– q(Eeja’ + ii= :< B)

‘dt ‘Te–
(3)

where

B

re

ie

me’

the magnetic-flux density;

the relaxation time for electrons assumed isotropic and

constant;

the average induced velocity of the electrcms;

the effective mass of the electrons.

For electromagnetic propagation along the z direction and

with the magnetic field in the x direction, (3) can be written in


